

Case Study 🗡

Advanced Autonomous Robotics for Defense R&D

Delivering Mission-Ready Navigation in GPS-Denied Environments

40% Field-Testing Reduction 30%
Deployment Acceleration

Client Profile:

Our client is a premier government research organization operating under the Ministry of Defence, Government of India. Based in Bengaluru, this strategic R&D institution specializes in advanced robotics, autonomous systems, and underwater defense technologies. With a highly skilled workforce of 500+ scientists and engineers, it drives cutting-edge innovations for national security applications, including unmanned platforms, Al-enabled systems, and secure communication solutions.

Problem Statement

The client faced critical gaps in deploying autonomous systems for defense applications:

Localization Failure: Inability to maintain accurate positioning indoors/outdoors without GPS signals, risking mission integrity.

Sensor Fusion Complexity: Unreliable real-time integration of LiDAR, IMU, and stereo camera data, causing navigation drift.

Software Capability Gap: Limited in-house expertise to develop scalable ROS2-based autonomy stacks for path planning and 3D mapping.

Validation Bottlenecks: Absence of Hardware-in-the-Loop Simulation (HILS) delayed algorithm testing, escalating field deployment risks.

Accelerated Timelines: Stringent 12-month deadline to meet Ministry of Defence milestones amid resource constraints.

Our Solution:

MicroGenesis delivered a modular autonomous navigation stack with end-to-end capabilities:

Core Technical Architecture

ROS2 Foxy Navigation Stack:

- Unified framework integrating real-time localization, 3D mapping, path planning, and mission control nodes.
- Seamless sensor fusion for LiDAR, IMU, stereo camera, and GPS.

Validation Infrastructure:

➤ Hardware-in-the-Loop Simulation (HILS): Gazebo/ROS2 framework emulating underwater conditions, enabling 80% pre-deployment validation.

Precision Localization Engine:

- ➤ LiDAR-Inertial SLAM:
 Generated real-time
 3D maps with <5 cm
 drift and 12-DOF
 altitude data.
- EKF-Based Fusion: Combined IMU, GPS, and LiDAR inputs for continuous drift compensation in GPS-denied zones.

Accelerated Timelines:

Stringent 12-month deadline to meet Ministry of Defence milestones amid resource constraints.

Development Approach

Phase

Development

Testing

Deployment

Knowledge Transfer

Activities

Custom ROS2 nodes for SLAM, EKF, path planning

HILS validation of obstacle navigation

Docker packaging; on-premises integration

SDD/ICD documentation; on-site training

Tools/Outputs

C++, Python, Nav2 Stack

Gazebo, RViz, Ubuntu 20.04

Docker, GitLab CI/CD

Technical manuals, simulation reports

Business Impact:

The solution delivered mission-ready autonomy within 12 months, achieving quantifiable outcomes:

Performance Metrics -

KPI

Localization Accuracy

Testing Efficiency

Deployment Speed

Project Timeline Compliance Result

<5 cm drift in GPS-denied environments</p>

80% validation via HILS pre-deployment

Dockerized configuration

On-time delivery within 12 months

Operational Impact

Reliable navigation in critical zones

40% reduction in on-site testing time

30% faster integration

Met MoD defense milestones

Strategic Advantages

Future-Ready Architecture:

Modular design enables Al-based semantic mapping and swarm coordination upgrades.

Client Autonomy:

Comprehensive documentation/training empowered in-house team ownership.

Tactical Demonstration:

Successfully validated autonomous multi-floor transitions with dynamic obstacle avoidance.

